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Abstract. In this paper a review of application of Bayesian approach to global and stochastic optimiza- 
tion of continuous multimodal functions is given. Advantages and disadvantages of Bayesian approach 
(average case analysis), comparing it with more usual minimax approach (worst case analysis) are 
discussed. New interactive version of software for global optimization is discussed. Practical multidi- 
mensi0nal problems of global optimization are considered 
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1. Advantages and Disadvantages of Bayesian Approach to Global Optimization 

Classical approach to numerical methods is to design such sequence of points 

xn C A C R m, n : l , 2 . . .  

which converge to exact solution x* when n is large for all problems from a given 
family. In some simple cases, usually connected with a convexity, the convergence 
rate also can be defined. In the terms of decision theory this approach can be 
considered as "worst case" analysis, or "minimax approach" It means that some 
property of method should be present always, including the worst case. 

This approach seems so natural that most numerical analysts consider it as the 
only mathematical one. Anything else usually is classified as "heuristic," meaning 
the methods which may be practically quite acceptable, but without the proper 
mathematical justification. Mathematical justification usually is supposed to be a 
necessary part of serious numerical analysis. So any property of numerical methods 
which does not hold for all problems from a given family is often regarded at best 
as some empirical evidence. 

The obvious advantage of the classical approach is that it helps to keep the strict 
standards in numerical analysis. It does not allow to flood this field with numerical 
methods of unknown mathematical properties. 

The important disadvantage is that the minimax approach usually is to expensive. 
To provide something for the worst case one needs to make enormous number of 
iterations if the family of problems is broad enough. In a broad family of problems 
the worst case can be expected to be very bad. 

Let us to consider for example the global optimization of the family of Lif- 
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schitzian functions with unknown constant. Then the best method in the minimax 
sense is a uniform grid on a compact feasible set, see Sukharev (1975). It means 
that this global optimization algorithm is of exponential complexity. The num- 
ber of observations is increasing as exponent  of the dimension of problem. Here  
"observation" means an evaluation of objective function f(x) at some fixed point 
X. 

If the Lifschitzian constant is known, then some nonuniform grid technique is 
preferable, see Evtushenko (1985). However, even here the complexity of algorithm 
apparently remains exponential, perhaps with a bet ter  constant. 

In global optimization of continuous functions on a compact set we cannot apply 
a minimax approach at all. It is well known that maximum does not exist on a set 
of all continuous functions. It means that for any fixed continuous function and a 
fixed method of search there exists some other continuous function with a larger 
deviation from a global minimum. So the strong condition of uniform convergence 
does not apply here. 

Some weaker convergence conditions usually are considered. For example a 
condition of convergence for any fixed continuous function. It is easy to see that 
to provide even this much weaker condition we need an exponential algorithm. The 
convergence for any continuous function can be provided only by asymptotic dense 
observations. Meaning that maximal distance between observations converges to 
zero. Otherwise we can miss a global minimum for some continuous function. 

The problem becomes even more complicated if the "noise" is present. For  ex- 
ample if we define an objective function by Monte Carlo techniques or by physical 
experiments. 

The condition of ordinary convergence is rather a week one. It holds for any 
reasonable global optimization method providing asymptotic dense observations 
of continuous functions. It means that ordinary convergence can be regarded only 
as a necessary condition. Some additional conditions should be provided if we wish 
to justify our method sufficiently. 

Following the traditions of local optimization one would like to prove not just 
ordinary convergence but the rate of convergence also. However, we cannot do it 
for a set of all continuous functions. This set is too large. The trouble is that usually 
we define a convergence rate using directly or indirectly a notion of supremum. This 
notion does not apply to a noncompact set of all continuous functions. So different 
ways to make the convergence conditions stronger should be investigated. 

One way is to consider a density ratio instead of the rate of convergence. A 
density ratio we define as a ratio of density of observations in a vicinity of global 
minimum to an average density of observations. It defines the asymptotic efficiency 
of methods of global optimization reasonably well. So the density ratio in global 
optimization can  be regarded as a replacement of rate of convergence. 

So far we were talking about asymptotic. However,  a useful method should be 
good not only asymptotic but for a finite number of observations too. It means 
that a good asymptotic behavior can be regarded as some desirable but  not suffi- 
cient condition. To justify any claim of practical efficiency of a method of global 
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optimization some additional "non-asymptotic" conditions should be considered. 
It is well known that in real life applications even the best asymptotic property 
can happen to be nearly useless if the number of observations is not large enough. 

By "worst case" notion an "optimal" method is a method which provides min- 
imal or at least reasonably low deviation from a global optimum for all functions 
from a given family. It involves a necessity to define a "worst case," what can be 
impossible to do if a set of functions is not compact. It is a theoretical reason 
against a "worst case" approach. The practical reason is that a worst Case can 
happen to be very bad, if a family of functions is broad enough. 

For example for smooth convex functions the well known variable metric meth- 
ods are perhaps nearly optimal. For those methods a superlinear convergence was 
proven, see Powell (1971). For a family of one-dimensional unimodal functions 
Kiefer (1953) developed the optimal in a minimax sense method. Some optimal in 
a minimax sense methods were developed also for a set of Lifschitzian functions, 
see Evtushenko (1985), Pijavskij (1972), Shubert (1972), Sucharev (1975). 

Some of those objective functions belong to a narrow sets of functions, namely 
smooth convex or one-dimensional unimodal. It is easy to see from the examples 
that here the minimax (or approximately minimax) methods can be regarded as 
nearly optimal from both theoretical and practical points of view. For the broader 
family of functions, such as Lifschitzian functions with unknown constant, the 
minimax approach is not so attractive. Here the provision of optimality of method 
for a worst case is too expensive, if a dimension of the problem is large. 

For a family of continuous functions and functions with noise the worst case does 
not exist. So here worst case analysis is not possible at all. In global optimization 
of continuous functions the average case analysis seems like a reasonable way to 
reconcile the conditions of practical efficiency and mathematical justification. 

For a theoretical justification of a numerical method it is needed to show its 
properties under some well defined conditions. Assuming continuity, differentia- 
bility or the existence of Lifschitzian constant of objective functions. Supposing 
homogeneity and independence of m-th differences of an a priori distribution, and 
so on. Formal testing of those conditions in real life applications is a problem 
about as complex as the problem of global optimization. So the correspondence of 
applied problems to theoretical conditions is judged mainly by intuition of experts. 

It is well known that the intuition of experts depends on practical experience. 
It means that the theoretical analysis of methods of global optimization should be 
supplemented by the analysis of case studies, covering a sufficiently large family 
of different applied problems. It is done in the "Applications" part of the paper, 
considering seven real life examples from very different fields. 

2. The General Ideas of Average Case Analysis in Global Optimization 

The main question related to average case analysis is how to define a notion 
of "average." Mathematically an average is an integral. It is well known that to 
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define an integral some measure should be fixed. The most convenient one being a 
probability measure P. This measure is a part of problem definition. So it should be 
fixed before any investigation of the problem starts. In Statistical Decision Theory, 
see De Groot (1970), P is called a priori distribution. An average case analysis is 
called Bayesian approach. 

The first problem of Bayesian approach is how to define an a priori distribu- 
tion P. The second one is how to update it using the results of observations 
Zn = ( x i , f ( x i ) , i  = 1 , . . . ,n ) .  Updated distribution is called an a posteriori dis- 
tribution P(Zn).  The third problem of Bayesian approach is how to minimize an 
a posteriori risk function. The risk function Rn(x) is an expected deviation from 
global minimum at a fixed point x. The expectation is defined by an a posteriori 
distribution P(zn). A minimization of the risk function Rn(x) defines a point of 
next observation Xn+l. 

Any Bayesian method depends on a priori distribution by definition. So it is de- 
sirable to define this distribution on a basis of some clear and simple assumptions. 
An example: it follows from the conditions of continuity of f(x), homogeneity of 
P and independence of m-th differences that an a priori distribution P is Gaussian 
with a special covariance matrix. 

We update an a priori distribution by the well known formula of conditional 
probability. Unfortunately to update a Gaussian distribution one should inverse a 
covariance matrix of n-th order. Where n is number of observations. It is hardly 
practical if n is more than say 500. The covariance matrix represents Kolmogorov's 
consistency conditions. It means that the inversion can be avoided only if we 
replace the consistency conditions by something weaker. 

Let us to replace them by the following three conditions. Continuity of risk func- 
tion R,,(x). Convergence of Bayesian method to a global minimum of any continu- 
ous function f(x). Simplicity of expressions defining "conditional" expectation and 
"conditional" variance. So we define some "Bayesian" method which can be re- 
garded as the simplest one under some assumptions. Here the term "Bayesian" has 
different meaning from the classical definition of Bayesian approach. The reason 
is that the modifyed definition of "conditional" expectation and variance do not 
correspond to Kolmogorov's conditions. 

There are other ways to simplify the expressions of conditional expectation and 
conditional variance. Zilinskas, see (1986), roughly expressed them using an ex- 
trapolation theory. 

We assume that a Bayesian method should converge to a global minimum of any 
continuous function, if an a priori distribution is chosen correctly. It means that the 
asymptotic of Bayesian method is at least as good as that of any classical one for 
a family of continuous functions. In fact it is even better. The asymptotic density 
of observations of Bayesian methods is considerably higher near global minimum. 
However, the main advantage of Bayesian methods is that they minimize an ex- 
pected deviation from the global minimum for any fixed number of observations. 
Here asymptotic notions of complexity, such as exponential or polynomial are not 
directly applicable. 
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The problem of minimization of the risk function R,,(X) even in a simplest case 
is multimodal. So by using the Bayesian method we are replacing the original 
multimodal problem by an auxiliary multimodal problem. The advantage of doing 
so is that the auxiliary problem is for some rough prediction of the gain expected 
as a result of the next observation. We need prediction just to estimate the point 
of next observation. The actual evaluation of objective function will be made by 
the next observation. 

It means that there is no need for exact minimization of the risk function. We can 
use some simplest methods such as Monte Carlo to minimize R,  (x) roughly. Even 
so an application of Bayesian methods can be efficient only for global optimization 
of "expensive" objective functions. A function f (x )  can be regarded as expensive 
if for its evaluation we need minutes of CPU time. For  not expensive functions 
the simpler global optimization methods such as clustering, see Torn (1989), can 
happen to be more efficient. 

Now we shall formalize all this. 

3. Method of  Search 

We shall consider a family C A of continuous functions f = f (x) ,  x E A C R m. We 
assume a possibility to evaluate f at any fixed point xn,n = 1 , . . .  ,N,  where N is 
a total number  of observations. 

A point of n + 1 observation is defined by decision function dn in the following 
way: xn+l -- dn(z,,). Here  we represent observed data by vector Z n  = ( x i ,Y i , i  = 

1 , . . . ,  n) ,  Yi = f ( x i ) .  The method of search we represent by vector d = (do , . . . ,  dN). 
A final decision shall be denoted by xN+l = xn+l(d). Then a deviation of a method 
d from a global minimum x* can be expressed as: 

8 = ~(f, d) = f(xN+l(d)) -- f(x*) 

Worst case analysis corresponds to a minimax condition: 

minmax6(f ,  d) (1) 
d xEC A 

A well known example of minimax method is a uniform grid, in a case of Lips- 
chitzian functions with unknown Lipschitz constant, see Sukharev (1975). 

Average case analysis we define by the Bayesian condition: 

m i n [  6(f,  d) dP (f) (2) 
d JCA 

Here  P is an a priori distribution. 

4. How to Define an a priori Distribution 

We can see from (2) that Bayesian methods depend on an a priori distribution P.  
The choice of P is very wide. So first we must set some conditions which define a 
family of "correct"  a priori distributions. 
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A priori distribution can be considered as correct if it provides convergence to 
global minimum of any continuous function when n is large. This is so, see Mockus 
(1989), if conditional variance converges to zero if and only if when the distance 
from nearest observation approaches zero. Otherwise conditional variance con- 

verges to some positive number. It means that we cannot predict exact values of 
objective function outside the "densely observed" area. 

A large family of a priori distributions satisfy this. Some additional conditions 
should be introduced to narrow this family. Simple and natural are the three fol- 
lowing conditions: 

(i) Continuity of sample functions f (x)  
(ii) Homogeneity of a priori distribution P 
(iii) Independence of m-th differences 
Those conditions satisfies a Gaussian a priori distribution with constant mean/.~ 

and the following covariance function: 

(3) 

Here x} C [-1,1], i  = 1 , . . . , m .  
Condition (ii) means that a priori probabilities do not depend on the origin of 

coordinates. Condition (iii) means that the m-th differences are a sort of "white 
noise". Here m-th differences can be regarded as discrete approximations of deriva- 
tives of m-th order. So assumption (iii) is the weakest condition compatible with 
continuity of samples. It does not restrict the behavior of derivatives. As a result 
the sample functions are non-differentiable almost everywhere. If rn = 1 a pri- 
ori distribution (3) can be regarded as a sum of two Wiener fields running in the 
opposite directions plus a constant/z.  

This example shows that the a priori distribution is not necessarily so "subjec- 
tive" after all. It can be derived from some simple and clear assumptions. 

5. H o w  to Update  an a priori Distribution 

Let us denote by Px(Y) an a priori probability density of objective function f (x)  at 
a fixed point x. Denote by Px(YlZ,,) a conditional probability density of f (x)  with 
regard to observation vector z~. It is called "a posteriori density". 

Transformation of Px(Y) to px(y[z,,) corresponds to well known Bayesian for- 
mula. This transformation can be regarded as an updating of a priori density after 
observing the results represented by vector zn = (xi,Yi = 1 , . . . ,  n),yi = f ( x i ) .  

In a Gaussian case an a posteriori density can be expressed as: 

1 1 (Y-~n(X)) z 

Px(YlZn)- x/z~r ( "e 2 41xl (4) 
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Denote by/~n(x) a conditional expectation of f (x )  with regard to zn. It shows 
expected values of f (x )  after n observations. 

Denote by O'na(X) corresponding conditional variance. It defines a degree of un- 
certainty about f (x )  after n observations. 

Denote by /.fix) an a priori expected value of f (x )  and by o-2(x) an initial 
uncertainty represented as an a priori variance. 

Denote by o-q the a priori covariance between f (xi)  and f(xj).  By O'xi denote 
a priori covariance between f (x )  and f(xi).  Here the corresponding covariance 
matrices can be expressed as X = (o'ij) and Xx = (O'xi). 

Now we can express a conditional expectation: 

tZn(X) -m- ]s + X x X  -1 (y -- ]~(X)) (5) 

and a conditional variance: 

O'2(X) = O'2(X) -- ~ x ~ - l ~  T (6) 

If a priori distribution corresponds to (3) and m = 1 then expression (5) is 
a linear interpolation between the observed values Yi. Expression (6) defines a 
piecewise quadratic positive function with zero values at observed points xi. In 
this special case we need no inversion of covariance matrix. The reason is that the 
a priori distribution corresponding to (3) is Markovian. It means that conditional 
expectation and conditional variance depends only on the two closest observations. 
One observation on the left and one on the right. It helps to design simple and 
efficient Bayesian methods for one-dimensional global optimization, see Zilinskas 
(1989). Unfortunately the Markovian property holds only in one-dimensional case. 

6. How to Define and Minimize a Risk Function 

It follows from (2) that a Bayesian method can be expressed by condition: 

d* = arg rr~n f c  A (f(XN+I (d)) - f(x*)) dP (f) 

This condition can be made simpler omitting a second component of the integral 
which does not depend on d. So we have: 

d* = arg rain f f(xN+l(x)) dP( f )  (7) 
d JCA 

Equation (7) can be reduced to N-dimensional dynamic programing problem, see 
Mockus (1972). However, this problem is too difficult. So one-step approximation 
is used. At  any n we suppose that the n + 1-th observation is the last one. And so 
on until we reach n = N. 

Assume that P is such, that the minimum of conditional expectation ~0n = 
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m i n x e A  I.~n(X) is equal to the minimal observed value Yon = mini ~ i ~ n  Yi like in 
the Wiener process. 

Then the point of the next observation x = Xn+l should minimize a conditional 
expectation of the least of two values: f ( x )  and cn, where f ( x )  is a predicted value 

at a point x and c n = Yon - En" 

Here  en is a correction parameter. This parameter  can control influence of re- 
maining observations. It should be large if there are many of them. It should be 
small otherwise. 

In the one-step Gaussian case a risk function can be expressed as: 

l 
l-~O -- (y-~n (x)) 2 

R n ( x ) - -  1 min(y , cn )e  2~(x) dy (8) 
V  n(X) 

and a Bayesian method can be defined as: 

Xn+l = arg  mxEi~Rn(X), n = 1 , . . . , N .  (9) 

We can see from (5), (6) and (8) that to define the risk function in cases when 
m > 1 we need to inverse the covariance matrix of n-th order. It is too difficult 
when n is large. So we have no choice but to abandon the classical framework 
of probability theory. Some of its basic assumptions we shall replace by other 
conditions more convenient for calculations. 

The inversion of covariance matrix ~ corresponds to solution of the system of 
linear equations which represent the Kolmogorov's consistency conditions. So the 
only way to get rid of expensive inversion is to omit those conditions. 

It seems reasonable to replace Kolmogorov's  consistency conditions by the fol- 
lowing three assumptions: 

(i) Continuity of risk function (8) 
(ii) Convergence of method (9) to a global minimum of any continuous function 
(iii) Simplicity of expressions for /zn(x)  and o-n(x) 
Then method (9) can be expressed, see Mockus (1989), as: 

xn+l = arg max min IIx - xill 2 
xEa l ~ i ~ n Y i  --YOn + ~n' 

n = 1 , . . . , N .  (10) 

7. Convergence of Bayesian Methods 

The main motivation to introduce the Bayesian search was not asymptotic at all. 
We wanted to minimize average deviation after finite (usually small) number  of 
observations. So we defined the Bayesian methods (9) and (10). 

Now let us consider those methods also from the asymptotic point of  view. Usual 
convergence conditions we already included as a condition (ii) defining Bayesian 
method (10). This condition is weak. It does not show an efficiency of search. 
Efficiency of search can be defined as a relation of density of observations in an 



G L O B A L  A N D  S T O C H A S T I C  O P T I M I Z A T I O N  355 

area of global minimum to corresponding average density. We shall denote it by 
Kn. Then asymptotic of K n  for method (10) can be expressed, see Mockus (1989), 
as: 

K = lim K n  - fa -- fo + E (11) 
n - - * o o  t~ 

Here 

E = l i m  E,, 
n----~ o o  

where En > 0 is a correction parameter, see (10). 
We can see from (11) that the search will be nearly asymptotic uniform if the 

correction parameter e is large or if the objective function f ( x )  is flat, meaning 
that fa - f0 is small. 

If the correction parameter is small then most of the observations will be placed 
asymptotically around a global minimum. However, it will take more observations 
to reach this asymptotic condition. 

8 .  S o f t w a r e  

The global optimization software was developed considering the results of na- 
tional (USSR) and international "competition" of different algorithms of global 
optimization, see Dixon and Szego (1978). Some experience in real life optimiza- 
tion problems also was used selecting the set of optimization algorithms, see the 
"applications" part of this paper. The set of algorithms of global optimization in- 
cludes four versions of Bayesian search, one version of clustering, a version of 
uniform deterministic grid and pure Monte Carlo search. 

Usually it is reasonable to start optimization by a global method and to finish 
it by some local method. Two global methods, the clustering and the Zilinskas 
version of Bayesian technique contains some simple algorithms of local search. It 
means that the local search is not necessary for those two methods, but it may be 
useful. 

There are three local optimization methods. One method is of variable metric 
type, with Lagrangian multipliers and penalty functions, for constrained optimiza: 
tion of smooth functions, see Schittkowski (1985). The second method is of simplex 
type of Nelder and Mead, with penalty functions for constrained optimization of 
nondifferentiable functions, see Himmelblau (1972). The third is of stochastic ap- 
proximation with Bayesian step size control, for functions with "noise," see Mockus 
(1989). 

Each subroutine represents a global or a local method. The choice of method 
has to follow the idea that the computational complexity of the method roughly 
corresponds to that of the objective function. 

For "expensive" functions the Bayesian methods could be recommended. Those 
methods need a lot of auxiliary calculations, but each observation is very efficient. 
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For "cheap" functions simple grid methods, such as Monte Carlo or uniform 
deterministic grid, see Sobolj (1969), can happen to be better. Here observations 
are not so efficient, but auxiliary calculations are negligible. It explains relative 
efficiency of simple methods optimizing simple functions. 

If we expect the number of local minima to be small, then clustering techniques, 
see Torn (1989), may be the best choice. 

For global optimization of one-dimensional functions a relatively simple 
Bayesian technique is available. 

There are optimization problems where objective functions can be roughly repre- 
sented as a sum of components depending on different variables. Here the Bayesian 
method of coordinate search usually shows very good results. This method glob- 
ally optimizes one variable at a time using one-dimensional Bayesian search. The 
difference of this method from other methods of global optimization is that it de- 
pends on a starting point. So the deviation from global minimum can be made 
as small as we want by applying a multi-start procedure from different uniformly 
distributed starting points. 

All global methods optimize in a rectangular region. Linear and nonlinear in- 
equality constraints is represented as some penalty function. The same applies also 
for local method of stochastic approximation type. 

In local methods of simplex and variable metrics type linear and nonlinear con- 
straints can be defined directly. It may be done by subroutines for constraints, 
supplied by the user. 

The global optimization software is in three versions. The first one is a library 
of portable Fortran subroutines. The users guide and source codes are in a book 
by Mockus (1989), including a floppy disk. 

The portable Fortran version can run on any computer with standard For- 
tran compiler. Users should represent objective functions in a form FUNCTION 
FI(X,N), where X is an array of variables, N is its dimension. 

Rectangular constraints are given by arrays of lower bounds A and upper bounds 
B. For local methods of simplex and variable metrics type we may represent con- 
straints by subroutine CONSTR(X,N,G,MC). Here G is an array of length MC 
which contains the values of constraints at the point X and MC is the number of 
constraints. 

The second version is an interactive system. Here the objective function can be 
written in one of two forms: Fortran or C. This system is for users which prefer 
to represent objective functions both in C and in Fortran. This version needs 
Microsoft C and Fortran compilers, see Mockus (1990). 

In this version, besides the regular scalar optimization, there is also a possibility 
of vector optimization applying the idea of Pareto optimality. The Pareto set can 
be approximately defined using a Bayesian or a grid method. 

The latest interactive version is for objective functions represented in C. It needs 
a Turbo C compiler. Here a user represents objective function f(x) as some C 
subroutine. 
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In both interactive systems users can select the global or local method by a menu 
system. The current results can be observed in table and graphical forms. There 
are two graphical forms: 

1.  GRAPH: the dependence of best value of objective function on observation 
number. 

2. PROJECTION: the dependence of observed objective function values on one 
of the variables. 

The main advantage of the first version, the Fortran library, is its portability. 
Disadvantage is that interactive possibilities are very limited. It means that this 
version can be easily used for some well defined optimization problems, but not 
for preliminary investigations, where interaction is essential. 

The advantages of the second (Microsoft) and the third (turbo C) versions are 
reasonably good interactive facilities. Disadvantage is that both those versions can 
be used only on PC. It is all right for preliminary investigation and for solution of 
small sca!e problems: For real life global optimization problems the computational 
power of PC is usually not sufficient. 

So the fourth version is developed. It is a global optimization software designed 
for UNIX and X Window systems. It has excellent interactive facilities plus porta- 
bility to almost any computer, including super computers and some parallel com- 
puters. 

9 .  E x a m p l e s  o f  A p p l i c a t i o n s  

Many examples of applications are about optimization of parameters of mathe- 
matical models represented as some systems of nonlinear differential equations. 
The objective function f(x) here depends on a solution of the equations. Variables 
x represent the parameters of system which we can control. To such family of 
problems belong the three following examples: 

- Maximization of general yield of differential amplifiers. 
- Optimization of mechanical system of shock-absorber. 
- Estimation of parameters of nonlinear regression of immunological model. 
The last example suggest a broad area for the applications of global optimization. 

It is well known that in nonlinear regression the square deviation and also the 
likelihood functions could happen to be multimodal for some data. The number 
of local minima can be very large, even in simple cases. An example: 

- Estimation of unknown parameters of bilinear time series. 
The large source of difficult global optimization problems is engineering design. 

Here we are optimizing parameters of some mathematical models, usually non- 
linear. An example: 

- Optimization of composite laminates. 
Many laws of nature could be defined in the terms of global optimization. An 

example: 
- T h e  "Disk" problem: minimization of potential energy of organic molecule. 
We often cannot describe the behavior of new materials and technologies by 
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mathematical models, because the corresponding information and knowledge is 
not available. Here optimization can be done by direct experiments, changing the 
control variables and observing the results. An example: 

- The planning of extremal experiments of thermostable polymeric composition. 
Let us now to consider those examples separately. 

10. Maximization of  General Yield of  Differential Amplifiers 

In the production of LSI (Large Scale Integration) electronic circuits there are 
some inevitable deviations of dimensions of LSI elements such as transistors and 
resistors from the ratings set by designer. As a result some of the circuits will not 
meet the standards. The reason is that such parameters as delay time z, lower level 
of output voltage U or a bias of zero u may get out of the feasible region. 

Those parameters we can define by a system of nonlinear differential equations, 
depending on dimensions of transistors and resistors. Usually we solve the system 
of differential equations using specific numerical techniques. Deviations of dimen- 
sions from the fixed ratings can be simulated using some Monte Carlo techniques 
assuming multivariate Gaussian distribution. 

In addition there are also so called "catastrophic" rejects, due to the defects of 
silicon crystal. 

So the yield function can be expressed as a product of three components: 
- The number of circuits from a crystal. It is a decreasing function of dimensions. 
- The unit minus the percentage of rejects, attributable to deviation of parame- 

ters. It is an increasing function of dimensions. 
- The unit minus the part of rejects, due to crystal defects. It is a decreasing 

function of dimensions. 
The product of monotonous functions is not necessarily unimodal. For differ- 

ential amplifier the yield function can happen to be two-modal for each variable 
representing width or length of transistor. It means the possibility of 22m modality, 
where m is the number of transistors. 

The multimodality of yield function together with the presence of noise which 
is inevitable in any Monte Carlo simulation makes the problem very difficult. So 
only coordinate optimization (global line search along each variable one by one) 
seems convenient enough. 

Here the noise was filtered by Wiener smoothing. It means that the yield function 
is assumed to be a Wiener process and that the simulation error is a Gaussian noise 
with standard deviation tr, see Baskis and Mockus (1988). 

If tr is large then we shall get a horizontal line corresponding to average value 
of observations. It means complete filtering and no optimization. If tr is zero then 
we shall see piecewise linear line connecting the observed values. It means no 
filtering at all and a large number of pseudo local minima. Good value of smoothing 
parameter tr for differential amplifier was about 10. 

In one-dimensional global optimization Wiener smoothing seems more conve- 
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nient comparing with the well known techniques of smoothing of scatterplots, see 
Friedman et al. (1980). In Wiener smoothing there is only one parameter control- 
ling the smoothing level, and this parameter has clear statistical meaning. It can 
be regarded as a variance of Gaussian noise and can be estimated using the results 
of observations. 

The idea of Wiener smoothing can be regarded as a spline smoothing under some 
conditions, see Craven and Wahba (1979). The meaning of standard deviation of 
noise o- is similar to that of smoothing parameter of spline A. 

11. Optimization of the Mechanical System of Shock-Absorber 

Let us consider the mechanical object of two masses. Suppose that the shock is 
instantaneous impulse and that the shock-absorber can be represented by a sys- 
tem of linear differential equations. The parameters of the shock-absorber should 
minimize the maximal deviation during the transitional process. 

f ( x ) =  max Iv(t)] 
O~t~T 

where v(t) denotes a trajectory of lower mass and f (x )  means the maximal de- 
viation during the transitional process. The four components of vector x E B 
represent different relations of elasticities, masses and dampers. The feasible set 
B we define by nonlinear constraints. Using penalty functions we can reduce the 
problem to the optimization in a rectangular set A, where B C A. 

Here we see two multimodal problems: one-dimensional one maxt~[0,~] I v(t)l , 
and four-dimensional one minx~A f (x )  . 

A convenient way to maximize one-dimensional multimodal function v(t) is 
by relatively simple one-dimensional Bayesian method, see Zilinskas (1976). The 
four-dimensional function is not unimodal and rather expensive. Calculation of this 
function for a fixed x is defined algorithmically and includes two procedures: one 
defining the trajectory v(t) and the other maximizing [v(t)[. So minimizing f (x)  it is 
natural to use the global multi-dimensional Bayesian method, see Mockus (1989). 

The case of nonlinear shock-absorber (when we represent the object by a system 
of nonlinear differential equations) can be treated in a similar way. One difference 
is that numerical instead of analytical integration of nonlinear differential equa- 
tions should be applied. The other difference is that there appears an additional 
fifth parameter of "nonlinearity." 

12. Estimation of Parameters of Nonlinear Regression of Immunological Model 

The well known mathematical model of immune response is the system of nonlin- 
ear differential equations with time delay: 
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du 
dt - y f v  

d f  
d--t = p c -  ~ l y f v -  tzl f  

dc 
dt  fvlt-  -  2(c - co) 

Here v = v(t) is the density of plasma antigen, f = f( t)  is the density of specific 
antibodies, c = c(t) is the density of plasma cells, ~- is time delay, y, p, 7,/zl,/~2, a 
are the unknown parameters of the model which we shall represent by vector x. 

The relation between the parameters x of the model and the trajectories v (t), f( t)  
and c(t) at the points ti, i = 1 , . . . ,  K can be defined by numerical methods. Belykh 
(1983) developed very efficient numerical methods for integration of differential 
equations with time delay. 

The objective function f (x)  is a likelihood function for some given data. Experi- 
mental data corresponds to the reaction of a homogeneous sample of mice to the 
inoculation of a nonpathogenic antigen. The results of experiments are the plasma 
cell densities at six fixed moments of time ti, i = 1 , . . . ,  6. 

For this data the likelihood function appears as a unimodal one. However, global 
optimization happened to be useful selecting a good starting point for local op- 
timization. It is important, because the efficiency of local search depends on a 
starting point. 

Function f (x)  is not expensive, due to efficiency of specific numerical integration 
methods by Belykh (1983). So the methods of uniform deterministic optimization 
happened to be sufficiently good for preliminary global search. 

13. Estimation of Parameters of Bilinear Time Series 

The class of bilinear time series models is useful for describing many non-linear 
phenomena. Let us consider simple example: 

Yi ~ xlyi-1 + x2yi-2 + x3yi-lei-1 + x4yi-2ei-1 + ei 

Here x --- ( x l , . . .  ,X 4) are unknown parameters, Yi, i = 1 , . . . ,  k is experimental 

data, ei are residuals. 
The sort of behavior seen from this model is common in seismological data, see 

Subba Rao and Gabr (1984). For this type of data, the activity due to an event is 
of very short duration. 

The unknown parameters x can be estimated by minimizing the sum of residual 
squares: 
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K 

f (x)  = E ei2 
i=1 

It is easy to see that when i is large then the residuals ei are polynomials of 
high degree, so multimodality of f (x)  is almost inevitable. In that sense it is a 
good example for application of global optimization. The objective function f(x) 
is simple, so the uniform deterministic search can be recommended for global 
optimization. The function f(x) is smooth, so a sort of second order techniques 
such as variable metrics techniques may be used for local optimization. 

14. Optimization of Composite Laminates 

Optimization is usually most efficient in new developments. There are several 
reasons for that, such as the lack of experience and the absence of library of 
ready made designs to choose. There is no "feeling" of the problem, which usually 
appears after some experience. 

An example of new application area is the design of laminated composite mate- 
rials. Laminated composites are of several thin layers (or plies), which are bound 
together to form a composite laminate. A single ply consists of long reinforcing 
fibers (e.g. graphite fibers), embedded within a relatively weak matrix material (e.g., 
epoxy). All fibers within an individual ply are oriented in one direction. Composite 
laminates are usually fabricated such, that fiber angles vary from ply-to-ply. 

In our studies we have restricted the decision variable x k to be fiber orientation 
angle in the k-th play. Here k ranges from 1 to n and n equals the number of plies 
in the laminate. Angles x i ranges from -900 to +90 ~ 

The objective function f (x)  was defined by experts as a sum of "penalty" func- 
tions corresponding to different plies k = 1 , . . . ,  n under different load conditions 
j = 1 , . . . ,  m. It was supposed that penalties are exponentially increasing functions 
of calculated ply strains e k i = 1,2 and ply shear strain Tk2(j). It was assumed 

i ( j )  ' 
that the penalty functions are multiplied by factor ~ = m �9 n if the corresponding 
critical strains ef t and y(~ are exceeded. So: 

f (x)  ( 1 )  Lj=~ [~k=l [ ( 8  " exp ]r r 2 

+ 8 . e x p  + 8 . e x p  
~ r  12 

The ply strains ek i = 1,2 and 7 k i(]), 12(]) are functions of the decision variables 

x k and the applied loadings. The summation is over all n-plies and m-loading 
conditions. 
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Three methods of global optimization were compared, Bayesian, uniform deter- 
ministic and Hit-and-Run, see Zabinsky et al. (1990). As expected Bayesian method 
used the available observations in a most efficient way. The method of Hit-and- 
Run used less computer time, due to simpler auxiliary calculations. The method of 
uniform deterministic search was somewhere between Bayesian and Hit-and-Run 
methods, both in terms of computer time and number of calculations. 

This ordering of efficiency of methods is natural for simple functions. We expect 
that increasing t h e  complexity of f ( x ) ,  what apparently will happen taking into 
account many additional important factors, the Bayesian method may turn out to 
be the best one. 

15. The "Disk" Problem: Minimization of Potential Energy of Organic Molecule 

Let us assume that the potential energy f ( x )  of a molecule can be represented as 
a sum of functions 1)ij(Vij),  where r/j is the distance between atom i and atom j. So: 

where: 

f ( x )  = L vii 
i,j=l,... ,m,i<j 

Here s/j is diameter of atom j and 

ri j  = ~ / ( X  i - -  x/') 2 + ( y i  _ y j ) 2  + (Z i _ Z j)2. 

Vector (x J, y J, z j) represents the c~nter of atom j. 
The two-dimensional "Disk" prpblem was a test to compare different methods 

of global optimization at the CECAM Workshop on Global Optimization and 
Molecular Chemistry, Paris, June 1990. 

Bayesian algorithm was good in a sense of number of observations. Some other 
methods such as tunneling, see Levy et al. (1982), stochastic equations, see Alufi- 
Pentini et al. (1985), and discrete dynamical system, see Donnelly and Rogers 
(1988), were more efficient in computer time, due to simpler auxiliary calculations. 

The Disk problem can be considered in several stages. 
In the first stage the main objective would be to get just some preliminary 

understanding of the behavior of the objective function. To do it we would like 
to define some initial approximation to the global minimum, using a very small 
number of observations. 

Most of the methods of optimization a t  the Workshop were using a!s 9 gradi- 
ent values. It was supposed gradients are roughly N+I  (where N is number of 
variables) times more "expensive" and more "informative" comparing with single 
observation. It was assumed that the minimal reasonable number of iterations in 
the seven point ( 14 variables ) disk problem is ten. So the minimal equivalent 
number of observations can be estimated as 150 = (14 + 1) �9 10. 

1)ij ~- \ ri j  J \ r i j  ~1 
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The advantage of this stage of research is that different methods can be easily 
compared using different computers, including PC. The disadvantage is that the test 
problem of just 7 "atoms" is very small comparing with real life organic molecules 
with 300 and more atoms. 

There are good reasons to suppose that the Disk problem belongs to a NP- 
complete family. It means that any realistic number of observations for say a 100 
point case will appear at least as small as 150 observations in the 7 point case. The 
reason is the exponential complexity of NP-complete family of problems. So the 
results of comparison of methods obtained on a small problem using small number 
observations can happen to be useful for larger problems and correspondingly 
larger numbers of observations. 

For the tasks of this stage a useful tool would be some PC compatible global 
optimization software with good graphics, for example the system GLOBAL MIN- 
IMUM. The result after 9 observations of global Bayesian search and 108 observa- 
tions of local search was -9.45. It deviates significantly from the global minimum 
which is about -12.6. 

One of the reasons of such large deviation is that the number of observations was 
very small. The other reason is that the global optimization methods usually are 
most efficient, if objective function can be represented as a sum of two components: 
one unimodal and one multimodal. Multimodal component makes the sum of two 
mulfimodal. The projection of the potential energy function looks differently; like 
almost constant function with occasional high and narrow spices. 

The second stage is to compare the results without restricting observations 
number. The result after 153952 observations using the clustering algorithm was 
-12.5396, what is quite near to the global minimum. Some other methods achieved 
a similar result, but the number of observations was larger. 

16. Planning of Extremal Experiments of Thermostable Polymeric Composition 

The objective function f(x) is the specific loss of mass kg/m 2 in the flow of high 
temperature gases during the fixed interval (20 see.). 

There are four variables x = (x 1, x2,x3,x4), where 
x 1 is the proportion of carbonized phenol-formaldehyde resin to phenol- 

formaldehyde. 
x 2 is the proportion of urotropine, 
x 3 is the specific pressure of moulding kg/cm 2, 
x 4 is time of moulding min. 
The technological constraints are given in the form ai ~ X i ~ bi, i = 1 , . . . ,  4. 
No mathematical description of the objective function was available. The opinion 

was that f(x) perhaps have more than one local minimum. The only way to define 
values of f(x) at fixed points xi was by physical experiment. In such a case some 
noise 71 usually is present. The presence of noise makes testing of unimodality of 
f(x) very difficult. It means that applying well known local methods of extremal 



364 JONAS MOCKUS 

experimental planning we can get stuck to some local minimum, which is far away 
from the global one. 

Here the application of Bayesian methods seems natural. In agreement with 
usual Bayesian techniques the first 12 observations were uniformly distributed. 
The following 14 observations were carried out by one-step Bayesian method with 
the Gaussian a priori distribution (3). 

Table I shows only the results of those observations when the quality of material 
was increasing. The best value of the specific loss 0.385 was considered to be good 
for the materials of the given type. 

Table I. Minimization of the specific loss of mass 

i x t x 2 x 3 x 4 f(xl) 

1 50 13 4070 8 2.141 
2 55 14.5 6 990 12 0.737 
4 65 12.5 5 210 4 0.514 
5 70 11 5 909 30 0.495 

11 70 14 3 289 3 0.493 
18 77 7.7 3 700 20 0.417 
26 80 10.5 4 320 17 0.385 
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